Simple harmonic motion-
http://en.wikipedia.org/wiki/Simple_harmonic_motion, From Wikipedia, the free encyclopedia
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Simple harmonic motion is the motion of a simple harmonic oscillator, a motion that is neither driven nor damped. The motion is periodic, as it repeats itself at standard intervals in a specific manner - described as being sinusoidal, with constant amplitude. It is characterized by its amplitude (which is always positive), its period which is the time for a single oscillation, its frequency which is the number of cycles per unit time, and its phase, which determines the starting point on the sine wave. The period, and its inverse the frequency, are constants determined by the overall system, while the amplitude and phase are determined by the initial conditions (position and velocity) of that system.
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1. Overview

Simple harmonic motion is defined by the differential equation, , where k is a positive constant.

In words simple harmonic motion is "motion where the acceleration of a body is proportional to, and opposite in direction to the displacement from its equilibrium position".

The above differential equation has a sinusoidal solution, pictured below.


A general equation describing simple harmonic motion is , where x is the displacement, A is the amplitude of oscillation, f is the frequency, t is the elapsed time, and φ is the phase of oscillation. If there is no displacement at time t = 0, the phase φ = 0. A motion with frequency f has period .

Simple harmonic motion can serve as a mathematical model of a variety of motions and provides the basis of the characterization of more complicated motions through the techniques of Fourier analysis.

Mathematics

It can be shown, by differentiating, exactly how the acceleration varies with time. Using the angular frequency ω, defined as

the displacement is given by the function

Differentiating once gives an expression for the velocity at any time.

And once again to get the acceleration at a given time.

These results can of course be simplified, giving us an expression for acceleration in terms of displacement.

a(t) = − ω2x(t). 

Examples
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An undamped spring-mass system undergoes simple harmonic motion.

Simple harmonic motion is exhibited in a variety of simple physical systems and below are some examples:

Mass on a spring: A mass M attached to a spring of spring constant k exhibits simple harmonic motion in space with

Alternately, if the other factors are known and the period is to be found, this equation can be used:

The total energy is constant, and given by where E is the total energy.

Uniform circular motion: Simple harmonic motion can in some cases be considered to be the one-dimensional projection of uniform circular motion. If an object moves with angular frequency ω around a circle of radius R centered at the origin of the x-y plane, then its motion along the x and the y coordinates is simple harmonic with amplitude R and angular speed ω.

Mass on a pendulum: In the small-angle approximation, the motion of a pendulum is approximated by simple harmonic motion. The period of a mass attached to a string of length with gravitational acceleration g is given by

This approximation is accurate only in small angles because of the expression for angular acceleration being proportional to the sine of position:

where I is the moment of inertia; in this case . When θ is small, and therefore the expression becomes

which makes angular acceleration directly proportional to θ, satisfying the definition of Simple Harmonic Motion.

For a solution not relying on a small-angle approximation, see pendulum (mathematics).

See also

· Isochronous 

· Uniform circular motion 

· Complex harmonic motion 

· Damping 

External links

· Java simulation of spring-mass oscillator 

· Explanations and animations of Simple Harmonic Motion 

Harmonic oscillator

From Wikipedia, the free encyclopedia

(Redirected from Spring-mass system)

Jump to: navigation, search
This article is about the harmonic oscillator in classical mechanics. For its use in quantum mechanics, see quantum harmonic oscillator. 




An undamped spring-mass system is a simple harmonic oscillator.

In classical mechanics, a harmonic oscillator is a system which, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x according to Hooke's law:

where k is a positive constant.

If F is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude).

If a frictional force (damping) proportional to the velocity is also present, the harmonic oscillator is described as a damped oscillator. In such situation, the frequency of the oscillations is smaller than in the non-damped case, and the amplitude of the oscillations decreases with time.

If an external time-dependent force is present, the harmonic oscillator is described as a driven oscillator.

Mechanical examples include pendula (with small angles of displacement), masses connected to springs, and acoustical systems. Other analogous systems include electrical harmonic oscillators such as RLC circuits (see Equivalent systems below).
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Simple harmonic oscillator
The simple harmonic oscillator has no driving force, and no friction (damping), so the net force is just:

Using Newton's Second Law
The acceleration, a is equal to the second derivative of x.

If we define , then the equation can be written as follows,

We observe that:

and substituting

integrating

where K is the integration constant, set K = (A ω0)2
integrating, the results (including integration constant φ) are

and has the general solution

where the amplitude and the phase are determined by the initial conditions.

Alternatively, the general solution can be written as

where the value of is shifted by relative to the previous form;

or as

where and are the constants which are determined by the initial conditions, instead of and in the previous forms.

The frequency of the oscillations is given by

The kinetic energy is

. 

and the potential energy is

so the total energy of the system has the constant value

Driven harmonic oscillator
A driven harmonic oscillator satisfies the nonhomogeneous second order linear differential equation
where A0 is the driving amplitude and ω is the driving frequency for a sinusoidal driving mechanism. This type of system appears in AC LC (inductor-capacitor) circuits and idealized spring systems lacking internal mechanical resistance or external air resistance.

Damped harmonic oscillator
Main article: Damping
A damped harmonic oscillator satisfies the second order differential equation

where b is an experimentally determined damping constant satisfying the relationship F = − bv. An example of a system obeying this equation would be a weighted spring underwater if the damping force exerted by the water is assumed to be linearly proportional to v.

The frequency of the damped harmonic oscillator is given by

where

Damped, driven harmonic oscillator
This satisfies the equation

The general solution is a sum of a transient (the solution for damped undriven harmonic oscillator, homogeneous ODE) that depends on initial conditions, and a steady state (particular solution of the nonhomogenous ODE) that is independent of initial conditions and depends only on driving frequency, driving force, restoring force, damping force,

The steady-state solution is

where

is the absolute value of the impedance or linear response function
and

is the phase of the oscillation relative to the driving force.

One might see that for a certain driving frequency, ω, the amplitude (relative to a given F0) is maximal. This occurs for the frequency

and is called resonance of displacement.

In summary: at a steady state the frequency of the oscillation is the same as that of the driving force, but the oscillation is phase-offset and scaled by amounts that depend on the frequency of the driving force in relation to the preferred (resonant) frequency of the oscillating system.

Example: RLC circuit.

Full mathematical definition
Most harmonic oscillators, at least approximately, solve the differential equation:

where t is time, b is the damping constant, ωo is the characteristic angular frequency, and Aocos(ωt) represents something driving the system with amplitude Ao and angular frequency ω. x is the measurement that is oscillating; it can be position, current, or nearly anything else. The angular frequency is related to the frequency, f, by

Important terms
· Amplitude: maximal displacement from the equilibrium. 

· Period: the time it takes the system to complete an oscillation cycle. Inverse of frequency. 

· Frequency: the number of cycles the system performs per unit time (usually measured in hertz = 1/s). 

· Angular frequency: ω = 2πf 

· Phase: how much of a cycle the system completed (system that begins is in phase zero, system which completed half a cycle is in phase π). 

· Initial conditions: the state of the system at t = 0, the beginning of oscillations. 

Simple harmonic oscillator
A simple harmonic oscillator is simply an oscillator that is neither damped nor driven. So the equation to describe one is:

Physically, the above never actually exists, since there will always be friction or some other resistance, but two approximate examples are a mass on a spring and an LC circuit.

In the case of a mass attached to a spring, Newton's Laws, combined with Hooke's law for the behavior of a spring, states that:

where k is the spring constant 

m is the mass 

x is the position of the mass 

a is its acceleration. 

Because acceleration a is the second derivative of position x, we can rewrite the equation as follows:

The most simple solution to the above differential equation is

and the second derivative of that is

where A is the amplitude, δ is the phase shift, and ω is the angular frequency. 

Plugging these back into the original differential equation, we have:

Then, after dividing both sides by we get:

or, as it is more commonly written:

The above formula reveals that the angular frequency ω of the solution is only dependent upon the physical characteristics of the system, and not the initial conditions (those are represented by A and δ). We will label this ω as ωo from now on. This will become important later.

Universal oscillator equation
The equation

is known as the universal oscillator equation since all second order linear oscillatory systems can be reduced to this form. This is done through nondimensionalization.

If the forcing function is f(t) = cos(ωt) = cos(ωtcτ) = cos(ωτ), where ω = ωtc, the equation becomes

The solution to this differential equation contains two parts, the "transient" and the "steady state".

Transient solution
The solution based on solving the ordinary differential equation is for arbitrary constants c1 and c2 is

The transient solution is independent of the forcing function. If the system is critically damped, the response is independent of the damping.

Steady-state solution
Apply the "complex variables method" by solving the auxiliary equation below and then finding the real part of its solution:

Supposing the solution is of the form

Its derivatives from zero to 2nd order are

Substituting these quantities into the differential equation gives

Dividing by the exponential term on the left results in

Equating the real and imaginary parts results in two independent equations

Amplitude part


Log-log plot of the frequency response of an ideal harmonic oscillator.

Squaring both equations and adding them together gives

By convention the positive root is taken since amplitude is usually considered a positive quantity. Therefore,

Compare this result with the theory section on resonance, as well as the "magnitude part" of the RLC circuit. This amplitude function is particularly important in the analysis and understanding of the frequency response of second-order systems.

Note that the variables in these equations ought to be identified before showing the equation.

Phase part
To solve for φ, divide both equations to get

This phase function is particularly important in the analysis and understanding of the frequency response of second-order systems.

Full solution
Combining the amplitude and phase portions results in the steady-state solution

The solution of original universal oscillator equation is a superposition (sum) of the transient and steady-state solutions

For a more complete description of how to solve the above equation, see linear ODEs with constant coefficients.

Equivalent systems
Harmonic oscillators occurring in a number of areas of engineering are equivalent in the sense that their mathematical models are identical (see universal oscillator equation above). Below is a table showing analogous quantities in four harmonic oscillator systems in mechanics and electronics. If analogous parameters on the same line in the table are given numerically equal values, the behavior of the oscillators will be the same.

	Translational Mechanical
	Torsional Mechanical
	Series RLC Circuit
	Parallel RLC Circuit

	Position 
	Angle 
	Charge 
	Voltage 

	Velocity 
	Angular velocity 
	Current 
	

	Mass 
	Moment of inertia 
	Inductance 
	Capacitance 

	Spring constant 
	Torsion constant 
	Elastance 
	Susceptance 

	Friction 
	Rotational friction 
	Resistance 
	Conductance 

	Drive force 
	Drive torque 
	
	

	Undamped resonant frequency :

	
	
	
	

	Differential equation:

	
	
	
	


Applications
The problem of the simple harmonic oscillator occurs frequently in physics because of the form of its potential energy function:

Given an arbitrary potential energy function V(x), one can do a Taylor expansion in terms of x around an energy minimum (x = x0) to model the behavior of small perturbations from equilibrium.

Because V(x0) is a minimum, the first derivative evaluated at x0 must be zero, so the linear term drops out:

The constant term V(x0) is arbitrary and thus may be dropped, and a coordinate transformation allows the form of the simple harmonic oscillator to be retrieved:

Thus, given an arbitrary potential energy function V(x) with a non-vanishing second derivative, one can use the solution to the simple harmonic oscillator to provide an approximate solution for small perturbations around the equilibrium point.

Examples
Simple pendulum
A simple pendulum exhibits simple harmonic motion under the conditions of no damping and small amplitude.

Assuming no damping and small amplitudes, the differential equation governing a simple pendulum is

The solution to this equation is given by:

where θ0 is the largest angle attained by the pendulum. The period, the time for one complete oscillation , is given by 2π divided by whatever is multiplying the time in the argument of the cosine

Pendulum swinging over turntable
Simple harmonic motion can in some cases be considered to be the one-dimensional projection of two-dimensional circular motion. Consider a long pendulum swinging over the turntable of a record player. On the edge of the turntable there is an object. If the object is viewed from the same level as the turntable, a projection of the motion of the object seems to be moving backwards and forwards on a straight line. It is possible to change the frequency of rotation of the turntable in order to have a perfect synchronization with the motion of the pendulum.

The angular speed of the turntable is the pulsation of the pendulum.

In general, the pulsation-also known as angular frequency, of a straight-line simple harmonic motion is the angular speed of the corresponding circular motion.

Therefore, a motion with period T and frequency f=1/T has pulsation

In general, pulsation and angular speed are not synonymous. For instance the pulsation of a pendulum is not the angular speed of the pendulum itself, but it is the angular speed of the corresponding circular motion.

Spring-mass system
Spring-mass system in equilibrium (A), compressed (B) and stretched (C) states.

When a spring is stretched or compressed by a mass, the spring develops a restoring force. Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length:

where F is the force, k is the spring constant, and x is the displacement of the mass with respect to the equilibrium position.

This relationship shows that the distance of the spring is always opposite to the force of the spring.

By using either force balance or an energy method, it can be readily shown that the motion of this system is given by the following differential equation:

If the initial displacement is A, and there is no initial velocity, the solution of this equation is given by:

Energy variation in the spring-damper system 

In terms of energy, all systems have two types of energy, potential energy and kinetic energy. When a spring is stretched or compressed, it stores elastic potential energy, which then is transferred into kinetic energy. The potential energy within a spring is determined by the equation 

When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximum potential energy, the kinetic energy of the mass is zero. When the spring is released, the spring will try to reach back to equilibrium, and all its potential energy is converted into kinetic energy of the mass.
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A damped spring-mass system.

Damping is any effect, either deliberately engendered or inherent to a system, that tends to reduce the amplitude of oscillations of an oscillatory system.
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Definition
In physics and engineering, damping may be mathematically modelled as a force synchronous with the velocity of the object but opposite in direction to it. Thus, for a simple mechanical damper, the force F may be related to the velocity v by

where c is the viscous damping coefficient, given in units of newton-seconds per meter.

This relationship is perfectly analogous to electrical resistance. See Ohm's law.

This force is an (raw) approximation to the friction caused by drag.

In playing stringed instruments such as guitar or violin, damping is the quieting or abrupt silencing of the strings after they have been sounded, by pressing with the edge of the palm, or other parts of the hand such as the fingers on one or more strings near the bridge of the instrument. The strings themselves can be modelled as a continuum of infinitesimally small mass-spring-damper systems where the damping constant is much smaller than the resonance frequency, creating damped oscillations (see below). See also Vibrating string.

Example: mass-spring-damper


A mass attached to a spring and a damper. The damping coefficient, usually c, is represented by B in this case. The F in the diagram denotes an external force, which this example does not include.

An ideal mass-spring-damper system with mass m (in kilograms), spring constant k (in newtons per meter) and viscous damper of damping coeficient c (in newton-seconds per meter) can be described with the following formula:

Fs = − kx 

Treating the mass as a free body and applying Newton's second law, we have:

where a is the acceleration (in meters per second squared) of the mass and x is the displacement (in meters) of the mass relative to a fixed point of reference.

Differential equation
The above equations combine to form the equation of motion, a second-order differential equation for displacement x as a function of time t (in seconds):

Rearranging, we have

Next, to simplify the equation, we define the following parameters:

and

The first parameter, ω0, is called the (undamped) natural frequency of the system . The second parameter, ζ, is called the damping ratio. The natural frequency represents an angular frequency, expressed in radians per second. The damping ratio is a dimensionless quantity.

The differential equation now becomes

Continuing, we can solve the equation by assuming a solution x such that:

where the parameter is, in general, a complex number.

Substituting this assumed solution back into the differential equation, we obtain

Solving for γ, we find:

System behavior


Dependence of the system behavior on the value of the damping ratio ζ.

The behavior of the system depends on the relative values of the two fundamental parameters, the natural frequency ω0 and the damping ratio ζ. In particular, the qualitative behavior of the system depends crucially on whether the quadratic equation for γ has one real solution, two real solutions, or two complex conjugate solutions.

Critical damping
When ζ = 1, (defined above) is real, the system is said to be critically damped. An example of critical damping is the door-closer seen on many hinged doors in public buildings. An automobile suspension has a damping near critical damping (slightly higher for "hard" suspensions and slightly less for "soft" ones)

In this case, the solution simplifies to[1]:

where A and B are determined by the initial conditions of the system (usually the initial position and velocity of the mass):

Over-damping
When ζ > 1, is still real, but now the system is said to be over-damped. An over-damped door-closer will take longer to close the door than a critically damped door closer.

The solution to the motion equation is[2]:

where A and B are determined by the initial conditions of the system:

Under-damping
Finally, when 0 ≤ ζ < 1, is complex, and the system is under-damped. In this situation, the system will oscillate at the natural damped frequency , which is a function of the natural frequency and the damping ratio.

In this case, the solution can be generally written as[3]:

where

represents the natural damped frequency of the system, and A and B are again determined by the initial conditions of the system:

Alternative models
Viscous damping models, although widely used, are not the only damping models. A wide range of models can be found in specialized literature, but one of them should be referred here: the so called "hysteretic damping model" or "structural damping model".

When a metal beam is vibrating, the internal damping can be better described by a force proportional to the displacement but in phase with the velocity. In such case, the differential equation that describes the free movement of a single-degree-of-freedom system becomes:

where h is the hysteretic damping coefficient and i denotes the imaginary unit; the presence of i is required to synchronize the damping force to the velocity ( xi being in phase with the velocity). This equation is more often written as:

where η is the hysteretic damping ratio, that is, the fraction of energy lost in each cycle of the vibration.

Although requiring complex analysis to solve the equation, this model reproduces the real behaviour of many vibrating structures more closely than the viscous model.
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